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Abstract 
Image fusion is used to produce a single fused image from a set of two or more than two input images. The 

fused image has enhanced information that is more useful, understandable and decipherable for human 

perception and, preferably, for machine learning and computer vision. Here we present a novel technique for 

image fusion, using Empirical Mode Decomposition (EMD). EMD is a non-parametric data-driven analysis tool 

that decomposes non-linear non-stationary signals into Intrinsic Mode Functions (IMFs). In this method, we 

decompose images, rather than signals, from different imaging modalities into their Intrinsic Mode Functions 

(IMFs).This process of image fusion is performed at the decomposition level and the fused IMFs are 

reconstructed to realize the resultant fused image. A scheme which emphasize features from both modalities by 

decreasing the mutual information between IMFs, so it increases visual content and information of resultant 

image. Here we describe that how this methods improves the visual information of input images, by comparing 

with other fusion techniques. 

Keywords: Data fusion, Empirical mode decomposition, Image fusion, intrinsic mode function. 

   

I. INTRODUCTION 
Multisensor Image fusion is the process of 

combining relevant information from two or more 

images into a single image. The resulting image will 

be more informative than any of the input images. 

Multisensor data fusion has become a discipline 

which demands more general formal solutions to a 

number of application cases. Several situations in 

image processing require both high spatial and high 

spectral information in a single image. This is 

important in remote sensing. However, the 

instruments are not capable of providing such 

information either by design or because of 

observational constraints. 

In this paper, we harness the potential of a 

relatively recent method for analyzing nonlinear and 

non-stationary datasets developed by Huang et al [1]. 

One is able to decompose any complicated data set 

into a finite set of IMFs that admit well-behaved 

Hilbert transforms. EMD is a sifting process that 

decomposes a signal or data into its IMFs and a 

residue based on the local frequency or oscillation 

information. The first IMF contains the highest local 

frequencies of oscillation or the highest local spatial 

scales, whereas the final IMF contains the lowest 

local frequencies of oscillation and the residue 

contains the trend of the signal/data. Like time-

frequency distribution with EMD, acquiring the space 

spatial- frequency distribution of 2D data/image is 

possible with EMD. This decomposition method is 

data driven and hence highly effective. The 

decomposition is based on the local characteristic 

time scale of the data, and hence extendable to 

nonlinear and non-stationary processes. With the 

Hilbert transform, the IMFs allow representation of 

instantaneous frequencies as functions of time. The 

main conceptual benefits are the decomposition of 

parent signal into IMFs and the visualization of time-

frequency characteristics.  Although direct estimation 

of the horizontal and vertical frequencies of IMFs has 

been studied [2]. 

 

II. EMD OVERVIEW 
It is commonly known that Fourier transform is a 

useful method for stationary signal analysis, where as 

DWT is more suitable and useful for non-stationary 

signal analysis. In fact, the DWT is a windowed 

Fourier transform and a finite length of the DWT 

base may cause energy leakage. Once the wavelet 

base and decomposition level are determined, the 

signal obtained is within a certain frequency range 

that only depends on the sampling rate and has no 

relationship to the signal. Therefore, this method is 

not adaptive. Compared with the DWT, the EMD 

shows superior performance on data analysis and data 

filtering. It is a powerful tool for adaptive multiscale 

analysis of non-linear and non-stationary signals and 

data. These interesting characteristics of the EMD 

motivated the extension of this method to the area of 

image processing. 

 

2.1 EMD Assumptions 

The EMD theory was originally proposed for 

one dimensional data. It has been extended for two-

dimensional data The IMFs of a signal/data obtained 
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by EMD should have the following properties [1, 3, 

4, 5]. 

(a)  In the whole data set, the number of local 

extrema (maxima and minima together) and the 

number of zero crossings must be equal or differ 

by at most one. 

(b)  There should be only one mode of oscillation, 

that is, only one local maxima or local minima, 

between two successive zero crossings. 

(c)  At any point, the mean value of the upper and 

lower envelopes, defined by the local maxima 

and minima points, is zero or nearly zero. 

(d)  The IMFs are locally orthogonal among each 

other and as a set. 

The definition and properties of the IMFs are 

slightly different from the IMFs. It is sufficient for 

IMFs to follow only the final two (c) and (d) 

properties given above [6, 7]. 

 

2.2 The Sifting Process 

According to the definition of Intrinsic Mode 

Function, the decomposition method employ the 

envelopes defined by the local maxima and minima 

individually. The extrema are identified and all local 

maxima are connected by a thin plane spline orcubic 

spline to form the upper envelope. This process is 

repeated for the local minima and the lower envelope 

is constructed. While interpolating, care is taken that 

the upper and lower envelopes cover all the data 

between them. The point-wise mean of the envelopes 

is called m1, and is subtracted from the data a0 for 

the first component b1. For the first iteration, X(t) is 

the used as the data, 

The envelope means may be different from true 

local mean and consequently some asymmetric 

waveforms may occur but they can be ignored as 

their effects in the final reconstruction are very 

minimal. 

                            a0 = X(t) 

                          b1 = a0 – m1 

In the second sifting process, h1 is considered as 

the data where m11 is the mean of the b1 envelopes. 

                         b11 = b1 – m11 

The sifting process is continued k times till the 

first IMF, is obtained. 

                       b1k = b1(k-1) – m1k 

We designate c1 as the first IMF, 

                            c1 = b1k 

As per mathematical definitions, b1 should be 

considered as one of the IMF, as b1 should satisfy all 

the requirements of an IMF. But since we are 

interpolating the extrema with numerical schemes, 

overshoot and undershoot are bound to occur. These 

generate new maxima and minima, and distort the 

magnitude and phase of the existing extrema. These 

effects will not affect the process directly as it is the 

mean of these envelopes that pass on to the next 

stages of the algorithm and not the envelopes 

themselves. The formation of false extrema cannot be 

avoided easily and an interesting offshoot is that this 

procedure inherently recovers the proper modes lost 

in the initial examination and recovers low-amplitude 

riding waves on repeated sifting. 

A ringing effect at the ends of the data array may 

occur, but even with these effects, the sifting process 

still extracts the essential scales from the dataset. The 

sifting process eliminates riding waves and makes the 

signal symmetrical. 

 

2.3 Stopping Criteria 

In sifting, uneven amplitudes of data will be 

smoothened, finest oscillatory are separated from 

data. If it is kept continuous too long the sifting 

process may destroys the physical meaning of the 

amplitude fluctuations. That means we get IMFs that 

are frequency modulated signals with constant 

amplitude. To retain the physical meanings of an 

IMF, in terms of amplitude and frequency 

modulation, a standard deviation based stopping 

criterion is used. The standard deviation, SD, 

computed from two consecutive sifting results, is 

used as one of the stopping criteria. 

Sifting is stopped if SD falls below a threshold.The 

isolated intrinsic mode function, c1contains the finest 

scale of the signal and we separate c1 from the data. 

                          a1 = a0 – c1 

The new signal called the residue, a1, still holds 

lower frequency information. In the next iteration, the 

residue a1 is treated as the new data in place of a0 

and subjected to the sifting process. 

                         a(n) = a(n-1) – c(n) 

The sifting through residuals can be stopped by 

any of the following stopping criteria; if the residue 

becomes too small to be of any practical importance, 

or when the residue becomes a monotonic function 

containing no more IMFs. 

 
Fig. 1: Extension of one dimensional EMD to images 

via channel vectorization 
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2.4 Issues Related to EMD 

The IMFs and the residue a(n) of an image 

together can be named as empirical mode 

components (EMCs). Except for the truncation error 

of the digital computer, the summation of all EMCs 

returns the original data/image. The decomposition of 

an image into EMCs is not a unique process. The 

number of EMCs and their characteristics depend on 

the extrema detection method, interpolation 

technique, and stopping criteria of the iterations for 

each IMF. There are an infinite number of EMC sets 

for each image [8]. 

The expected result of image fusion using 

Empirical Mode Fusion (EMD) is shown in figure 2.  

 

III. CONCLUSIONS 
EMD is a potential image processing algorithm. 

To boost increased application of this algorithm for 

image processing applications, a fast, time efficient, 

and effective method is essential. Our fusion 

technique preserves information from both the input 

images. As input, we use registered visual and 

thermal images. Empirical mode decomposition is 

used to obtain the decomposed IMFs of the various 

channels of the visual and thermal image. Fusion is 

performed at the IMF level where a weighting 

scheme is used to emphasize features or, to 

discourage distracting features from one, or both, of 

the modalities by minimizing the mutual information 

between the IMFs. The output is a fused image 

containing enhanced visual and thermal information. 

      
(a)                                  (b) 

   
(b)                                  (d) 

Fig. 2: Comparison, (a) the visual image, (b) the 

thermal image, (c) pixel-bypixel averaging, (d ) EMD 

fusion. 

The proposed EMD can test for decomposing 

various images, and will give better result as 

expected, some of which have been reported in this 

paper. The simple change in the envelope estimation 

procedure provides a tremendous enhancement of the 

algorithm in terms of computation time and will play 

a very significant role in this area.. 

 

References 

[1]  N. E. Huang, Z. Shen, S. R. Long, et al., 

“The empirical  mode decomposition and 

the Hilbert spectrum for nonlinear andnon-

stationary time series analysis,” Proceedings 

of the Royal\ sSociety A, vol. 454, no. 1971, 

pp. 903–995, 1998. 

[2]  B. Shen, “Estimating the instantaneous 

frequencies of a multicomponent AM-FM 

image by bidimensional empirical mode 

decomposition,” in Proceedings of IEEE 

International Workshop on Intelligent Signal 

Processing (WISP ’05), pp. 283– 287, Faro, 

Portugal, September 2005. 

[3]  N. E.Huang, Z. Shen, and S. R. Long, “A 

new view of nonlinear water waves: the 

Hilbert spectrum,” Annual Review of Fluid 

Mechanics, vol. 31, pp. 417–457, 1999. 

[4]  N. E. Huang, M.-L. C. Wu, S. R. Long, et 

al., “A confidence limit for the empirical 

mode decomposition and Hilbert spectral 

analysis,” Proceedings of the Royal Society 

A, vol. 459, no. 2037, pp. 2317–2345, 2003. 

[5]  S. Kizhner, K. Blank, T. Flatley, N. E. 

Huang, D. Petrick, and P. Hestnes, “On 

certain theoretical developments underlying 

the Hilbert-Huang transform,” in 

Proceedings of IEEE Aerospace 

Conference, p. 14, Big Sky, Mont, USA, 

March 2006. 

[6]  J. C. Nunes, Y. Bouaoune, E. Del´echelle, 

O. Niang, and Ph. Bunel, “Image analysis by 

bidimensional empirical mode 

decomposition,” Image and Vision 

Computing, vol. 21, no. 12, pp. 1019–1026, 

2003. 

[7]  J. C. Nunes, S. Guyot, and E. Del´echelle, 

“Texture analysis based on local analysis of 

the bidimensional empirical mode 

decomposition,” Machine Vision and 

Applications, vol. 16, no. 3, pp. 177–188, 

2005. 

[8]  N. E. Huang, M.-L. C. Wu, S. R. Long, et 

al., “A confidence limit for the empirical 

mode decomposition and Hilbert spectral 

analysis,” Proceedings of the Royal Society 

A, vol. 459, no. 2037, pp. 2317–2345, 2003. 


